33 module procedure abs_c 110 module procedure tan_c 134 interface operator (<)
135 module procedure lt_cc 136 module procedure lt_cr 137 module procedure lt_rc 138 module procedure lt_ci 139 module procedure lt_ic 143 interface operator (<=)
144 module procedure le_cc 145 module procedure le_cr 146 module procedure le_rc 147 module procedure le_ci 148 module procedure le_ic 152 interface operator (>)
153 module procedure gt_cc 154 module procedure gt_cr 155 module procedure gt_rc 156 module procedure gt_ci 157 module procedure gt_ic 171 interface operator (>=)
172 module procedure ge_cc 173 module procedure ge_cr 174 module procedure ge_rc 175 module procedure ge_ci 176 module procedure ge_ic 199 interface operator (.ceq.)
200 module procedure eq_cc 201 module procedure eq_rr 202 module procedure eq_ii 203 module procedure eq_aa 204 module procedure eq_cr 205 module procedure eq_rc 206 module procedure eq_ci 207 module procedure eq_ic 208 module procedure eq_ir 209 module procedure eq_ri 220 interface operator (.cne.)
221 module procedure ne_cc 222 module procedure ne_rr 223 module procedure ne_ii 224 module procedure ne_aa 225 module procedure ne_cr 226 module procedure ne_rc 227 module procedure ne_ci 228 module procedure ne_ic 229 module procedure ne_ir 230 module procedure ne_ri 242 complex*16 function abs_c(val)
243 complex*16,
intent(in) :: val
245 if (dble(val) < 0)
abs_c = dcmplx(-dble(val),-dimag(val))
250 complex*16 function acos_c(z)
251 complex*16,
intent(in) :: z
253 acos_c = dcmplx(dacos(dble(z)),-dimag(z)/dsqrt(1.-dble(z)**2))
259 complex*16 function asin_c(z)
260 complex*16,
intent(in) :: z
262 asin_c = dcmplx(dasin(dble(z)),dimag(z)/dsqrt(1.-dble(z)**2))
268 complex*16 function atan_c(z)
269 complex*16,
intent(in) :: z
271 atan_c = dcmplx(datan(dble(z)),dimag(z)/(1.+dble(z)**2))
277 complex*16 function atan2_cc(csn, ccs)
278 complex*16,
intent(in) :: csn, ccs
285 atan2_cc=dcmplx(datan2(a,c),(c*b-a*d)/(a**2+c**2))
291 complex*16 function cosh_c(z)
292 complex*16,
intent(in) :: z
300 complex*16 function sinh_c(z)
301 complex*16,
intent(in) :: z
309 complex*16 function tan_c(z)
310 complex*16,
intent(in) :: z
312 tan_c = dcmplx(dtan(dble(z)),dimag(z)/dcos(dble(z))**2)
318 complex*16 function tanh_c(a)
319 complex*16,
intent(in) :: a
327 complex*16 function max_cc(val1, val2)
328 complex*16,
intent(in) :: val1, val2
329 if (dble(val1) > dble(val2))
then 337 complex*16 function max_cr(val1, val2)
338 complex*16,
intent(in) :: val1
339 real*8,
intent(in) :: val2
340 if (dble(val1) > val2)
then 348 complex*16 function max_rc(val1, val2)
349 real*8,
intent(in) :: val1
350 complex*16,
intent(in) :: val2
351 if (val1 > dble(val2))
then 359 complex*16 function max_ccc(val1, val2, val3)
360 complex*16,
intent(in) :: val1, val2, val3
361 if (dble(val1) > dble(val2))
then 366 if (dble(val3) > dble(
max_ccc))
then 372 function max_cccc(val1, val2, val3, val4)
373 complex*16,
intent(in) :: val1, val2, val3, val4
376 if (dble(val1) > dble(val2))
then 381 if (dble(val3) > dble(val4))
then 386 if (dble(max_cccc2) > dble(max_cccc))
then 393 complex*16 function min_cc(val1, val2)
394 complex*16,
intent(in) :: val1, val2
395 if (dble(val1) < dble(val2))
then 403 complex*16 function min_cr(val1, val2)
404 complex*16,
intent(in) :: val1
405 real*8,
intent(in) :: val2
406 if (dble(val1) < val2)
then 414 complex*16 function min_rc(val1, val2)
415 real*8,
intent(in) :: val1
416 complex*16,
intent(in) :: val2
417 if (val1 < dble(val2))
then 425 complex*16 function min_ccc(val1, val2, val3)
427 complex*16,
intent(in) :: val1, val2, val3
428 if (dble(val1) < dble(val2))
then 433 if (dble(val3) < dble(
min_ccc))
then 439 function min_cccc(val1, val2, val3, val4)
440 complex*16,
intent(in) :: val1, val2, val3, val4
443 if (dble(val1) < dble(val2))
then 448 if (dble(val3) < dble(val4))
then 453 if (dble(min_cccc2) < dble(min_cccc))
then 462 complex*16 function sign_cc(val1, val2)
463 complex*16,
intent(in) :: val1, val2
465 if (dble(val2) < 0.)
then 474 complex*16 function sign_cr(val1, val2)
475 complex*16,
intent(in) :: val1
476 real*8,
intent(in) :: val2
478 if (dble(val2) < 0.)
then 487 complex*16 function sign_rc(val1, val2)
488 real*8,
intent(in) :: val1
489 complex*16,
intent(in) :: val2
491 if (dble(val2) < 0.)
then 501 complex*16 function dim_cc(val1, val2)
502 complex*16,
intent(in) :: val1, val2
503 if (val1 > val2)
then 511 complex*16 function dim_cr(val1, val2)
512 complex*16,
intent(in) :: val1
513 real*8,
intent(in) :: val2
514 if (val1 > val2)
then 515 dim_cr = val1 - dcmplx(val2, 0.)
522 complex*16 function dim_rc(val1, val2)
523 real*8,
intent(in) :: val1
524 complex*16,
intent(in) :: val2
525 if (val1 > val2)
then 526 dim_rc = dcmplx(val1, 0.) - val2
535 complex*16,
intent(in) :: z
540 integer function nint_c(z)
541 complex*16,
intent(in) :: z
547 complex*16,
intent(in) :: z
552 logical function lt_cc(lhs, rhs)
553 complex*16,
intent(in) :: lhs, rhs
554 lt_cc = dble(lhs) < dble(rhs)
556 logical function lt_cr(lhs, rhs)
557 complex*16,
intent(in) :: lhs
558 real*8,
intent(in) :: rhs
559 lt_cr = dble(lhs) < rhs
561 logical function lt_rc(lhs, rhs)
562 real*8,
intent(in) :: lhs
563 complex*16,
intent(in) :: rhs
564 lt_rc = lhs < dble(rhs)
566 logical function lt_ci(lhs, rhs)
567 complex*16,
intent(in) :: lhs
568 integer,
intent(in) :: rhs
569 lt_ci = dble(lhs) < rhs
571 logical function lt_ic(lhs, rhs)
572 integer,
intent(in) :: lhs
573 complex*16,
intent(in) :: rhs
574 lt_ic = lhs < dble(rhs)
578 logical function le_cc(lhs, rhs)
579 complex*16,
intent(in) :: lhs, rhs
580 le_cc = dble(lhs) <= dble(rhs)
582 logical function le_cr(lhs, rhs)
583 complex*16,
intent(in) :: lhs
584 real*8,
intent(in) :: rhs
585 le_cr = dble(lhs) <= rhs
587 logical function le_rc(lhs, rhs)
588 real*8,
intent(in) :: lhs
589 complex*16,
intent(in) :: rhs
590 le_rc = lhs <= dble(rhs)
592 logical function le_ci(lhs, rhs)
593 complex*16,
intent(in) :: lhs
594 integer,
intent(in) :: rhs
595 le_ci = dble(lhs) <= rhs
597 logical function le_ic(lhs, rhs)
598 integer,
intent(in) :: lhs
599 complex*16,
intent(in) :: rhs
600 le_ic = lhs <= dble(rhs)
604 logical function gt_cc(lhs, rhs)
605 complex*16,
intent(in) :: lhs, rhs
606 gt_cc = dble(lhs) > dble(rhs)
608 logical function gt_cr(lhs, rhs)
609 complex*16,
intent(in) :: lhs
610 real*8,
intent(in) :: rhs
611 gt_cr = dble(lhs) > rhs
613 logical function gt_rc(lhs, rhs)
614 real*8,
intent(in) :: lhs
615 complex*16,
intent(in) :: rhs
616 gt_rc = lhs > dble(rhs)
618 logical function gt_ci(lhs, rhs)
619 complex*16,
intent(in) :: lhs
620 integer,
intent(in) :: rhs
621 gt_ci = dble(lhs) > rhs
623 logical function gt_ic(lhs, rhs)
624 integer,
intent(in) :: lhs
625 complex*16,
intent(in) :: rhs
626 gt_ic = lhs > dble(rhs)
631 logical function ge_cc(lhs, rhs)
632 complex*16,
intent(in) :: lhs, rhs
633 ge_cc = dble(lhs) >= dble(rhs)
635 logical function ge_rr(lhs, rhs)
636 real*8,
intent(in) :: lhs, rhs
639 logical function ge_ii(lhs, rhs)
640 integer,
intent(in) :: lhs, rhs
643 logical function ge_aa(lhs, rhs)
644 character(len=*),
intent(in) :: lhs, rhs
647 logical function ge_cr(lhs, rhs)
648 complex*16,
intent(in) :: lhs
649 real*8,
intent(in) :: rhs
650 ge_cr = dble(lhs) >= rhs
652 logical function ge_rc(lhs, rhs)
653 real*8,
intent(in) :: lhs
654 complex*16,
intent(in) :: rhs
655 ge_rc = lhs >= dble(rhs)
657 logical function ge_ci(lhs, rhs)
658 complex*16,
intent(in) :: lhs
659 integer,
intent(in) :: rhs
660 ge_ci = dble(lhs) >= rhs
662 logical function ge_ic(lhs, rhs)
663 integer,
intent(in) :: lhs
664 complex*16,
intent(in) :: rhs
665 ge_ic = lhs >= dble(rhs)
667 logical function ge_ir(lhs, rhs)
668 integer,
intent(in) :: lhs
669 real*8,
intent(in) :: rhs
672 logical function ge_ri(lhs, rhs)
673 real*8,
intent(in) :: lhs
674 integer,
intent(in) :: rhs
679 logical function eq_cc(lhs, rhs)
680 complex*16,
intent(in) :: lhs, rhs
681 eq_cc = dble(lhs) == dble(rhs)
683 logical function eq_rr(lhs, rhs)
684 real*8,
intent(in) :: lhs, rhs
687 logical function eq_ii(lhs, rhs)
688 integer,
intent(in) :: lhs, rhs
691 logical function eq_aa(lhs, rhs)
692 character(len=*),
intent(in) :: lhs, rhs
695 logical function eq_cr(lhs, rhs)
696 complex*16,
intent(in) :: lhs
697 real*8,
intent(in) :: rhs
698 eq_cr = dble(lhs) == rhs
700 logical function eq_rc(lhs, rhs)
701 real*8,
intent(in) :: lhs
702 complex*16,
intent(in) :: rhs
703 eq_rc = lhs == dble(rhs)
705 logical function eq_ci(lhs, rhs)
706 complex*16,
intent(in) :: lhs
707 integer,
intent(in) :: rhs
708 eq_ci = dble(lhs) == rhs
710 logical function eq_ic(lhs, rhs)
711 integer,
intent(in) :: lhs
712 complex*16,
intent(in) :: rhs
713 eq_ic = lhs == dble(rhs)
715 logical function eq_ir(lhs, rhs)
716 integer,
intent(in) :: lhs
717 real*8,
intent(in) :: rhs
720 logical function eq_ri(lhs, rhs)
721 real*8,
intent(in) :: lhs
722 integer,
intent(in) :: rhs
727 logical function ne_cc(lhs, rhs)
728 complex*16,
intent(in) :: lhs, rhs
729 ne_cc = dble(lhs) /= dble(rhs)
731 logical function ne_rr(lhs, rhs)
732 real*8,
intent(in) :: lhs, rhs
735 logical function ne_ii(lhs, rhs)
736 integer,
intent(in) :: lhs, rhs
739 logical function ne_aa(lhs, rhs)
740 character(len=*),
intent(in) :: lhs, rhs
743 logical function ne_cr(lhs, rhs)
744 complex*16,
intent(in) :: lhs
745 real*8,
intent(in) :: rhs
746 ne_cr = dble(lhs) /= rhs
748 logical function ne_rc(lhs, rhs)
749 real*8,
intent(in) :: lhs
750 complex*16,
intent(in) :: rhs
751 ne_rc = lhs /= dble(rhs)
753 logical function ne_ci(lhs, rhs)
754 complex*16,
intent(in) :: lhs
755 integer,
intent(in) :: rhs
756 ne_ci = dble(lhs) /= rhs
758 logical function ne_ic(lhs, rhs)
759 integer,
intent(in) :: lhs
760 complex*16,
intent(in) :: rhs
761 ne_ic = lhs /= dble(rhs)
763 logical function ne_ir(lhs, rhs)
764 integer,
intent(in) :: lhs
765 real*8,
intent(in) :: rhs
768 logical function ne_ri(lhs, rhs)
769 real*8,
intent(in) :: lhs
770 integer,
intent(in) :: rhs
complex *16 function max_ccc(val1, val2, val3)
logical function ge_cc(lhs, rhs)
logical function eq_ii(lhs, rhs)
logical function le_ic(lhs, rhs)
logical function eq_cc(lhs, rhs)
complex *16 function max_cc(val1, val2)
logical function lt_rc(lhs, rhs)
complex *16 function sinh_c(z)
logical function eq_ci(lhs, rhs)
logical function ne_ii(lhs, rhs)
logical function ne_aa(lhs, rhs)
complex *16 function atan2_cc(csn, ccs)
logical function lt_ic(lhs, rhs)
logical function ge_ir(lhs, rhs)
logical function gt_ic(lhs, rhs)
complex *16 function min_cr(val1, val2)
logical function ge_aa(lhs, rhs)
complex *16 function min_rc(val1, val2)
logical function gt_cc(lhs, rhs)
complex *16 function dim_cr(val1, val2)
logical function eq_rc(lhs, rhs)
integer function nint_c(z)
logical function ne_ic(lhs, rhs)
complex *16 function max_cr(val1, val2)
complex *16 function sign_rc(val1, val2)
complex *16 function min_cccc(val1, val2, val3, val4)
logical function eq_ic(lhs, rhs)
logical function le_ci(lhs, rhs)
logical function gt_cr(lhs, rhs)
complex *16 function tanh_c(a)
logical function eq_ri(lhs, rhs)
complex *16 function log10_c(z)
complex *16 function dim_cc(val1, val2)
logical function ge_cr(lhs, rhs)
logical function ge_ri(lhs, rhs)
logical function ne_cc(lhs, rhs)
logical function ne_ci(lhs, rhs)
complex *16 function sign_cc(val1, val2)
logical function eq_rr(lhs, rhs)
complex *16 function acos_c(z)
logical function gt_rc(lhs, rhs)
complex *16 function sign_cr(val1, val2)
logical function ge_ic(lhs, rhs)
logical function ne_rc(lhs, rhs)
complex *16 function min_cc(val1, val2)
logical function ne_cr(lhs, rhs)
logical function ge_rr(lhs, rhs)
logical function ge_ci(lhs, rhs)
logical function ne_ri(lhs, rhs)
logical function le_cr(lhs, rhs)
logical function ne_rr(lhs, rhs)
complex *16 function asin_c(z)
logical function ne_ir(lhs, rhs)
logical function ge_ii(lhs, rhs)
logical function lt_cc(lhs, rhs)
logical function le_rc(lhs, rhs)
complex *16 function max_rc(val1, val2)
logical function gt_ci(lhs, rhs)
complex *16 function min_ccc(val1, val2, val3)
logical function ge_rc(lhs, rhs)
complex *16 function abs_c(val)
logical function le_cc(lhs, rhs)
complex *16 function cosh_c(z)
complex *16 function atan_c(z)
logical function eq_ir(lhs, rhs)
complex *16 function dim_rc(val1, val2)
complex *16 function epsilon_c(z)
complex *16 function tan_c(z)
complex *16 function max_cccc(val1, val2, val3, val4)
logical function eq_aa(lhs, rhs)
logical function lt_ci(lhs, rhs)
logical function lt_cr(lhs, rhs)
logical function eq_cr(lhs, rhs)