35 module procedure abs_c 112 module procedure tan_c 136 interface operator (<)
137 module procedure lt_cc 138 module procedure lt_cr 139 module procedure lt_rc 140 module procedure lt_ci 141 module procedure lt_ic 145 interface operator (<=)
146 module procedure le_cc 147 module procedure le_cr 148 module procedure le_rc 149 module procedure le_ci 150 module procedure le_ic 154 interface operator (>)
155 module procedure gt_cc 156 module procedure gt_cr 157 module procedure gt_rc 158 module procedure gt_ci 159 module procedure gt_ic 173 interface operator (>=)
174 module procedure ge_cc 175 module procedure ge_cr 176 module procedure ge_rc 177 module procedure ge_ci 178 module procedure ge_ic 201 interface operator (.ceq.)
202 module procedure eq_cc 203 module procedure eq_rr 204 module procedure eq_ii 205 module procedure eq_aa 206 module procedure eq_cr 207 module procedure eq_rc 208 module procedure eq_ci 209 module procedure eq_ic 210 module procedure eq_ir 211 module procedure eq_ri 222 interface operator (.cne.)
223 module procedure ne_cc 224 module procedure ne_rr 225 module procedure ne_ii 226 module procedure ne_aa 227 module procedure ne_cr 228 module procedure ne_rc 229 module procedure ne_ci 230 module procedure ne_ic 231 module procedure ne_ir 232 module procedure ne_ri 244 complex*16 function abs_c(val)
245 complex*16,
intent(in) :: val
247 if (
real(val) < 0)
abs_c = cmplx(-
real(val),-aimag(val))
264 complex*16 function acos_c(z)
265 complex*16,
intent(in) :: z
268 acos_c = cmplx(
acos(
real(z)),-aimag(z)/sqrt(1.-
real(z)**2))
273 complex*16 function asin_c(z)
274 complex*16,
intent(in) :: z
277 asin_c = cmplx(
asin(
real(z)),aimag(z)/sqrt(1.-
real(z)**2))
282 complex*16 function atan_c(z)
283 complex*16,
intent(in) :: z
295 atan_c = cmplx(
atan(
real(z)),aimag(z)/(1.+
real(z)**2))
300 complex*16 function atan2_cc(csn, ccs)
301 complex*16,
intent(in) :: csn, ccs
326 complex*16 function cosh_c(z)
327 complex*16,
intent(in) :: z
338 complex*16 function sinh_c(z)
339 complex*16,
intent(in) :: z
350 complex*16 function tan_c(z)
351 complex*16,
intent(in) :: z
357 tan_c=cmplx(
tan(
real(z)),aimag(z)/cos(
real(z))**2)
362 complex*16 function tanh_c(a)
363 complex*16,
intent(in) :: a
378 complex*16 function max_cc(val1, val2)
379 complex*16,
intent(in) :: val1, val2
380 if (
real(val1) >
real(val2)) then
387 complex*16 function max_cr(val1, val2)
388 complex*16,
intent(in) :: val1
389 real(wp),
intent(in) :: val2
390 if (
real(val1) > val2) then
397 complex*16 function max_rc(val1, val2)
398 real(wp),
intent(in) :: val1
399 complex*16,
intent(in) :: val2
400 if (val1 >
real(val2)) then
407 complex*16 function max_ccc(val1, val2, val3)
408 complex*16,
intent(in) :: val1, val2, val3
409 if (
real(val1) >
real(val2)) then
414 if (
real(val3) >
real(
max_ccc)) then
419 function max_cccc(val1, val2, val3, val4)
420 complex*16,
intent(in) :: val1, val2, val3, val4
423 if (
real(val1) >
real(val2)) then
428 if (
real(val3) >
real(val4)) then
433 if (
real(max_cccc2) >
real(max_cccc)) then
440 complex*16 function min_cc(val1, val2)
441 complex*16,
intent(in) :: val1, val2
442 if (
real(val1) <
real(val2)) then
449 complex*16 function min_cr(val1, val2)
450 complex*16,
intent(in) :: val1
451 real(wp),
intent(in) :: val2
452 if (
real(val1) < val2) then
459 complex*16 function min_rc(val1, val2)
460 real(wp),
intent(in) :: val1
461 complex*16,
intent(in) :: val2
462 if (val1 <
real(val2)) then
469 complex*16 function min_ccc(val1, val2, val3)
470 complex*16,
intent(in) :: val1, val2, val3
471 if (
real(val1) <
real(val2)) then
476 if (
real(val3) <
real(
min_ccc)) then
481 function min_cccc(val1, val2, val3, val4)
482 complex*16,
intent(in) :: val1, val2, val3, val4
485 if (
real(val1) <
real(val2)) then
490 if (
real(val3) <
real(val4)) then
495 if (
real(min_cccc2) <
real(min_cccc)) then
504 complex*16 function sign_cc(val1, val2)
505 complex*16,
intent(in) :: val1, val2
507 if (
real(val2) < 0.) then
515 complex*16 function sign_cr(val1, val2)
516 complex*16,
intent(in) :: val1
517 real(wp),
intent(in) :: val2
519 if (
real(val2) < 0.) then
527 complex*16 function sign_rc(val1, val2)
528 real(wp),
intent(in) :: val1
529 complex*16,
intent(in) :: val2
531 if (
real(val2) < 0.) then
541 complex*16 function dim_cc(val1, val2)
542 complex*16,
intent(in) :: val1, val2
543 if (val1 > val2)
then 550 complex*16 function dim_cr(val1, val2)
551 complex*16,
intent(in) :: val1
552 real(wp),
intent(in) :: val2
553 if (val1 > val2)
then 554 dim_cr = val1 - cmplx(val2, 0.)
560 complex*16 function dim_rc(val1, val2)
561 real(wp),
intent(in) :: val1
562 complex*16,
intent(in) :: val2
563 if (val1 > val2)
then 564 dim_rc = cmplx(val1, 0.) - val2
573 complex*16,
intent(in) :: z
578 integer function nint_c(z)
579 complex*16,
intent(in) :: z
585 complex*16,
intent(in) :: z
590 logical function lt_cc(lhs, rhs)
591 complex*16,
intent(in) :: lhs, rhs
592 lt_cc =
real(lhs) <
real(rhs)
594 logical function lt_cr(lhs, rhs)
595 complex*16,
intent(in) :: lhs
596 real(wp),
intent(in) :: rhs
597 lt_cr =
real(lhs) < rhs
599 logical function lt_rc(lhs, rhs)
600 real(wp),
intent(in) :: lhs
601 complex*16,
intent(in) :: rhs
602 lt_rc = lhs <
real(rhs)
604 logical function lt_ci(lhs, rhs)
605 complex*16,
intent(in) :: lhs
606 integer,
intent(in) :: rhs
607 lt_ci =
real(lhs) < rhs
609 logical function lt_ic(lhs, rhs)
610 integer,
intent(in) :: lhs
611 complex*16,
intent(in) :: rhs
612 lt_ic = lhs <
real(rhs)
616 logical function le_cc(lhs, rhs)
617 complex*16,
intent(in) :: lhs, rhs
618 le_cc =
real(lhs) <= real(rhs)
620 logical function le_cr(lhs, rhs)
621 complex*16,
intent(in) :: lhs
622 real(wp),
intent(in) :: rhs
623 le_cr =
real(lhs) <= rhs
625 logical function le_rc(lhs, rhs)
626 real(wp),
intent(in) :: lhs
627 complex*16,
intent(in) :: rhs
628 le_rc = lhs <=
real(rhs)
630 logical function le_ci(lhs, rhs)
631 complex*16,
intent(in) :: lhs
632 integer,
intent(in) :: rhs
633 le_ci =
real(lhs) <= rhs
635 logical function le_ic(lhs, rhs)
636 integer,
intent(in) :: lhs
637 complex*16,
intent(in) :: rhs
638 le_ic = lhs <=
real(rhs)
642 logical function gt_cc(lhs, rhs)
643 complex*16,
intent(in) :: lhs, rhs
644 gt_cc =
real(lhs) >
real(rhs)
646 logical function gt_cr(lhs, rhs)
647 complex*16,
intent(in) :: lhs
648 real(wp),
intent(in) :: rhs
649 gt_cr =
real(lhs) > rhs
651 logical function gt_rc(lhs, rhs)
652 real(wp),
intent(in) :: lhs
653 complex*16,
intent(in) :: rhs
654 gt_rc = lhs >
real(rhs)
656 logical function gt_ci(lhs, rhs)
657 complex*16,
intent(in) :: lhs
658 integer,
intent(in) :: rhs
659 gt_ci =
real(lhs) > rhs
661 logical function gt_ic(lhs, rhs)
662 integer,
intent(in) :: lhs
663 complex*16,
intent(in) :: rhs
664 gt_ic = lhs >
real(rhs)
669 logical function ge_cc(lhs, rhs)
670 complex*16,
intent(in) :: lhs, rhs
671 ge_cc =
real(lhs) >= real(rhs)
673 logical function ge_rr(lhs, rhs)
674 real(wp),
intent(in) :: lhs, rhs
677 logical function ge_ii(lhs, rhs)
678 integer,
intent(in) :: lhs, rhs
681 logical function ge_aa(lhs, rhs)
682 character(len=*),
intent(in) :: lhs, rhs
685 logical function ge_cr(lhs, rhs)
686 complex*16,
intent(in) :: lhs
687 real(wp),
intent(in) :: rhs
688 ge_cr =
real(lhs) >= rhs
690 logical function ge_rc(lhs, rhs)
691 real(wp),
intent(in) :: lhs
692 complex*16,
intent(in) :: rhs
693 ge_rc = lhs >=
real(rhs)
695 logical function ge_ci(lhs, rhs)
696 complex*16,
intent(in) :: lhs
697 integer,
intent(in) :: rhs
698 ge_ci =
real(lhs) >= rhs
700 logical function ge_ic(lhs, rhs)
701 integer,
intent(in) :: lhs
702 complex*16,
intent(in) :: rhs
703 ge_ic = lhs >=
real(rhs)
705 logical function ge_ir(lhs, rhs)
706 integer,
intent(in) :: lhs
707 real(wp),
intent(in) :: rhs
710 logical function ge_ri(lhs, rhs)
711 real(wp),
intent(in) :: lhs
712 integer,
intent(in) :: rhs
717 logical function eq_cc(lhs, rhs)
718 complex*16,
intent(in) :: lhs, rhs
719 eq_cc =
real(lhs) == real(rhs)
721 logical function eq_rr(lhs, rhs)
722 real(wp),
intent(in) :: lhs, rhs
725 logical function eq_ii(lhs, rhs)
726 integer,
intent(in) :: lhs, rhs
729 logical function eq_aa(lhs, rhs)
730 character(len=*),
intent(in) :: lhs, rhs
733 logical function eq_cr(lhs, rhs)
734 complex*16,
intent(in) :: lhs
735 real(wp),
intent(in) :: rhs
736 eq_cr =
real(lhs) == rhs
738 logical function eq_rc(lhs, rhs)
739 real(wp),
intent(in) :: lhs
740 complex*16,
intent(in) :: rhs
741 eq_rc = lhs ==
real(rhs)
743 logical function eq_ci(lhs, rhs)
744 complex*16,
intent(in) :: lhs
745 integer,
intent(in) :: rhs
746 eq_ci =
real(lhs) == rhs
748 logical function eq_ic(lhs, rhs)
749 integer,
intent(in) :: lhs
750 complex*16,
intent(in) :: rhs
751 eq_ic = lhs ==
real(rhs)
753 logical function eq_ir(lhs, rhs)
754 integer,
intent(in) :: lhs
755 real(wp),
intent(in) :: rhs
758 logical function eq_ri(lhs, rhs)
759 real(wp),
intent(in) :: lhs
760 integer,
intent(in) :: rhs
765 logical function ne_cc(lhs, rhs)
766 complex*16,
intent(in) :: lhs, rhs
767 ne_cc =
real(lhs) /= real(rhs)
769 logical function ne_rr(lhs, rhs)
770 real(wp),
intent(in) :: lhs, rhs
773 logical function ne_ii(lhs, rhs)
774 integer,
intent(in) :: lhs, rhs
777 logical function ne_aa(lhs, rhs)
778 character(len=*),
intent(in) :: lhs, rhs
781 logical function ne_cr(lhs, rhs)
782 complex*16,
intent(in) :: lhs
783 real(wp),
intent(in) :: rhs
784 ne_cr =
real(lhs) /= rhs
786 logical function ne_rc(lhs, rhs)
787 real(wp),
intent(in) :: lhs
788 complex*16,
intent(in) :: rhs
789 ne_rc = lhs /=
real(rhs)
791 logical function ne_ci(lhs, rhs)
792 complex*16,
intent(in) :: lhs
793 integer,
intent(in) :: rhs
794 ne_ci =
real(lhs) /= rhs
796 logical function ne_ic(lhs, rhs)
797 integer,
intent(in) :: lhs
798 complex*16,
intent(in) :: rhs
799 ne_ic = lhs /=
real(rhs)
801 logical function ne_ir(lhs, rhs)
802 integer,
intent(in) :: lhs
803 real(wp),
intent(in) :: rhs
806 logical function ne_ri(lhs, rhs)
807 real(wp),
intent(in) :: lhs
808 integer,
intent(in) :: rhs
complex *16 function max_ccc(val1, val2, val3)
logical function ge_cc(lhs, rhs)
logical function eq_ii(lhs, rhs)
logical function le_ic(lhs, rhs)
logical function eq_cc(lhs, rhs)
complex *16 function max_cc(val1, val2)
logical function lt_rc(lhs, rhs)
complex *16 function sinh_c(z)
logical function eq_ci(lhs, rhs)
logical function ne_ii(lhs, rhs)
logical function ne_aa(lhs, rhs)
complex *16 function atan2_cc(csn, ccs)
logical function lt_ic(lhs, rhs)
logical function ge_ir(lhs, rhs)
logical function gt_ic(lhs, rhs)
complex *16 function min_cr(val1, val2)
logical function ge_aa(lhs, rhs)
complex *16 function min_rc(val1, val2)
logical function gt_cc(lhs, rhs)
complex *16 function dim_cr(val1, val2)
logical function eq_rc(lhs, rhs)
integer function nint_c(z)
logical function ne_ic(lhs, rhs)
complex *16 function max_cr(val1, val2)
complex *16 function sign_rc(val1, val2)
complex *16 function min_cccc(val1, val2, val3, val4)
logical function eq_ic(lhs, rhs)
logical function le_ci(lhs, rhs)
logical function gt_cr(lhs, rhs)
complex *16 function tanh_c(a)
logical function eq_ri(lhs, rhs)
complex *16 function log10_c(z)
complex *16 function dim_cc(val1, val2)
logical function ge_cr(lhs, rhs)
logical function ge_ri(lhs, rhs)
logical function ne_cc(lhs, rhs)
logical function ne_ci(lhs, rhs)
complex *16 function sign_cc(val1, val2)
logical function eq_rr(lhs, rhs)
complex *16 function acos_c(z)
logical function gt_rc(lhs, rhs)
complex *16 function sign_cr(val1, val2)
logical function ge_ic(lhs, rhs)
logical function ne_rc(lhs, rhs)
complex *16 function min_cc(val1, val2)
logical function ne_cr(lhs, rhs)
logical function ge_rr(lhs, rhs)
logical function ge_ci(lhs, rhs)
logical function ne_ri(lhs, rhs)
logical function le_cr(lhs, rhs)
logical function ne_rr(lhs, rhs)
complex *16 function asin_c(z)
logical function ne_ir(lhs, rhs)
logical function ge_ii(lhs, rhs)
logical function lt_cc(lhs, rhs)
logical function le_rc(lhs, rhs)
integer, parameter wp
working precision
complex *16 function max_rc(val1, val2)
logical function gt_ci(lhs, rhs)
complex *16 function min_ccc(val1, val2, val3)
logical function ge_rc(lhs, rhs)
complex *16 function abs_c(val)
logical function le_cc(lhs, rhs)
complex *16 function cosh_c(z)
complex *16 function atan_c(z)
logical function eq_ir(lhs, rhs)
complex *16 function dim_rc(val1, val2)
complex *16 function epsilon_c(z)
complex *16 function tan_c(z)
complex *16 function max_cccc(val1, val2, val3, val4)
logical function eq_aa(lhs, rhs)
logical function lt_ci(lhs, rhs)
logical function lt_cr(lhs, rhs)
logical function eq_cr(lhs, rhs)