76 WRITE(*,*)
'Riemann problem initialization' 77 WRITE(*,*)
'x_comp(1)',
x_comp(1)
94 EXIT riemann_int_search
98 END DO riemann_int_search
112 qp(4+i_solid,1:i1,:) =
alphas_w(i_solid)
116 qp(
n_vars+1,1:i1,:) = 0.d0
117 qp(
n_vars+2,1:i1,:) = 0.d0
132 WRITE(*,*) j,k,
b_cent(j,k)
154 qp(4+i_solid,1:i1,:) =
alphas_e(i_solid)
175 WRITE(*,*) j,k,
b_cent(j,k)
222 REAL*8 :: qp_init(n_vars+2) , qp0_init(n_vars+2)
233 qp0_init(5:4+n_solid) = 0.d0
234 qp0_init(n_vars+1:n_vars+2) = 0.d0
242 qp_init(n_vars+1:n_vars+2) = 0.d0
248 IF ( cell_fract(j,k) .GT. 0.d0 )
THEN
real *8, dimension(:), allocatable alphas_w
Left sediment concentration.
real *8, dimension(:), allocatable x_comp
Location of the centers (x) of the control volume of the domain.
real *8, dimension(:,:), allocatable b_cent
Topography at the centers of the control volumes.
integer comp_cells_x
Number of control volumes x in the comp. domain.
real *8, dimension(:,:), allocatable thickness_init
real *8 u_e
Right velocity x.
real *8 v_w
Left velocity y.
integer comp_cells_y
Number of control volumes y in the comp. domain.
real *8 riemann_interface
Riemann problem interface relative position. It is a value between 0 and 1.
real *8 u_w
Left velocity x.
integer n_vars
Number of conservative variables.
real *8, dimension(:), allocatable alphas_collapse
real *8, dimension(:), allocatable alphas_e
Right sediment concentration.
real *8 t_w
Left temperature.
real *8 v_e
Right velocity y.
subroutine compute_cell_fract(xs, ys, rs, cell_fract)
subroutine collapsing_volume
Collapsing volume initialization.
real *8 t_e
Right temperature.
subroutine qp_to_qc(qp, B, qc)
Physical to conservative variables.
subroutine riemann_problem
Riemann problem initialization.
real *8, dimension(:,:,:), allocatable q_init
real *8 hb_e
Right height.
integer n_solid
Number of solid classes.
real *8, dimension(:,:,:), allocatable q
Conservative variables.